P. P. SAVANI UNIVERSITY

Third Semester of B.Sc. Examination December -2021

SSES2190-Instrumentation & Analytical Techniques I

11.12.2021, Saturday Time: 09:00 a.m. to 11:30 a.m. Maximum Marks: 60

Instructions:

- 1. The question paper comprises of two sections.
- 2. Section I and II must be attempted in separate answer sheets.
- 3. Make suitable assumptions and draw neat figures wherever required.
- 4. Use of scientific calculator is allowed.

Section-I (Total Marks - 30)

Short Questions [10] 1.1 **Objectives** [05] 1.1a Elastic scattering and reflection spectroscopy is: The reflection or scattering the incident radiations by a material A B Measured by measuring the fraction of energy transmitted through the C The release of energy absorbed by the material. D None 1.1b Alkynes absorbs near to __ nm in ultraviolet region. 50 A B 175 C 270 620 D 1.1c Flame photometer consist of following parts Burner Monochromator B C Detector D All of the above 1.1d The emission wavelength for Lithium is _ A 515 nm B 622 nm C 670 nm D 766 nm 1.1e In flame photometry, the flame color for potassium is _ Green B Orange C Red D Violet 1.1f Sequence of events that occur in the flame are: Desolvation - Vaporization - Atomization - Excitation - Emission A B Emission - Vaporization - Atomization - Excitation - Desolvation C Vaporization - Emission - Atomization - Excitation - Desolvation Desolvation - Vaporization - Emission - Excitation - Atomization **1.1g** Study of the ability of a medium to slow the transmittance of energy is: Elastic scattering B Impedance spectroscopy C Emission Absorption

1.1h	Which type of transition is seen in saturated compounds containing atoms unshared pair of electrons such as oxygen, nitrogen, sulfur and halogens.	WI
	A $\pi \to \pi^*$ Transition	
	B $\sigma \rightarrow \sigma^*$ Transition	1
	C $n \to \pi^*$ Transition	
	D $n \rightarrow \sigma^*$ Transition	
1.1i	The range of UV radiation is	
	A 200-400 nm	
	B 400-700 nm	
	C 700-900 nm	
	D 900-1400 nm	
1.1j	The temperature range for oxygen acetylene fuel + oxidant mixture is A 3100 - 3200 Celsius	
	B 2900 – 3000 Celsius	
	C 2700 – 2800 Celsius	
	D 2500 – 2700 Celsius	
1.2 1.2a 1.2b 1.2c 1.2d	Answer the Following: (True/False/Short Question/Fill in the Blanks) In UV/visible spectroscopy molecule can undergoes electronic transitions involving σ , π and non-bonding (n) electrons. (True/False) The spectroscopy is a branch of science that involves the study of the interaction of electromagnetic radiations with matter. (True/False) Fuel-oxidant ratio is not very important in flame, it is not responsible for maintaining the flame temperature. (True/False) The most probable or common electronic transition is from highest occupied molecular orbital (HOMO) to lowest unoccupied molecular orbital (LUMO) in a molecule. (True/False). Define nebulization	[05]
Q.2 A B C	Short Notes (Attempt any two) Write steps involved in nebulization process. Explain the origin of UV Visible spectra. Explain types of transitions in UV visible spectroscopy.	[06]
Q.3	Explain in detail (Attempt any two)	[14]
A	Explain in detail: Chromophores	
В	Explain the effect of conjugation on UV visible absorbance.	
C	Explain the principle of flame photometry	

Section-II (Total Marks - 30)

Q.1	Short Questions	[10]
1.1	Objectives	[05]
1.1a	AAS was introduced by:	
	A Alice Ball	
	B Walsh and Alkemade	
	C R Franklin	
	D None of the mentioned above	
1.1b	Atomization is:	
	A The sample solution is aspirated into the flame or heated in a tube to	
	convert them into atoms	
	B The sample solution is filtered	
	C Both A & B	
	D None of the above mentioned	
1.1c	AAS is based upon the principles of:	
	A Charles law	
	B Boyle's law to higher states	
	C Henry's law	1
	D Lambert - Beer's Law	
1.1d	Radiation source in AAS is	
	A Hollow cathode lamp	
	B Xenon	
	C Argon	
11.	D Deuterium	
1.1e	The ionisation of some gas atoms occurs by applying a potential difference of	
	about between the anode and the cathode.	
	A 100 – 200 V B 150 – 200 V	
	C 300 - 400 V	
	D 600 – 700 V	
1.1f	In AAS, upper temperature limit for Butane - Air mixture is:	
1.11	A 2200 K	
	B 3000 K	
	C 3100 K	
	D 3160 K	
1.1g	Accuracy is defined as:	
	A The closeness of a result to the true value.	
	B Difference between measure value and true value	
	C Arithmetic mean	
	D Replacing a number with an approximate value	
1.1h	Which type of error causes the mean of the dataset to differ from	
	theaccepted value?	
	A Indeterminate error	
	B Random error	
	C Systematic error	
	D Gross error	
1.1i	Standard deviation is a measure of:	
	A The amount of variation or dispersion of a set of values.	
	B The amount of similarity in a set of values.	
	C Faulty calibrations or standardizations.	
	D Closeness of a result to the true value.	
1.1j	The extent to which results agree with one another is:	

	A Approximate value B Type 1 error C Type 2 error D Precision	
1.2 1.2a	Answer the Following: (True/False/Short Question/Fill in the Blanks) AAS is found to be superior to other techniques as it can be used to determine elements from trace to large quantities. (True/False)	[05]
1.2b	AAS is used for the analysis of 50-60 elements. (True/false).	
1.2c	The absorption of radiation by the free atoms is not proportional to their concentration. (True/False).	
1.2d	Write population standard deviation equation.	
1.2 e	Systematic errors may be either constant or proportional. (True/false).	
Q.2 A	Short Notes (Attempt any two) Write 3 uses of AAS.	[06]
В	Explain the radiation source in AAS.	
C	Explain gross error.	1
Q.3	Explain in detail (Attempt any two)	[14]
A B	Explain the procedure involved in determination of elements in AAS. Explain the instrumentation or apparatus of AAS.	
C	What is F-test? Explain	